
A Flexible Multi-dimensional QoS Performance Measure
Framework for Distributed Heterogeneous Systems

Jong-Kook Kim1, Debra A. Hensgen2,
Taylor Kidd2, Howard Jay Siegel3, David St. John2, Cynthia Irvine2,

Tim Levin4, N. Wayne Porter2, Viktor K. Prasanna5, and Richard F. Freund6

 This research was supported by the DARPA/ITO Quorum Program, by the DARPA/ISO BADD Program and the Office of
Naval Research under ONR grant number N00014-97-1-0804, by the DARPA/ITO AICE program under contract numbers
DABT63-99-C-0010 and DABT63-99-C-0012, and by the Colorado State University George T. Abell Endowment. Intel and
Microsoft donated some of the equipment used in this research.

1Purdue University
Electrical and Computer

Engineering School
W. Lafayette, IN 47907-1285 USA

jongkook@purdue.edu

2Naval Postgraduate School
Department of Computer Science

Monterey, CA 93943, USA
dhensgen@opentv.com

kidd@acm.org
irvine@cs.nps.navy.mil

Norman.Porter@jac.af.mil

3Colorado State University
Department of Electrical and

Computer Engineering
Department of Computer Science
Ft. Collins, CO 80523-1373 USA

HJ@ColoState.edu

4Anteon Corporation
2600 Garden Rd., Ste. 220A
Monterey, CA 93940, USA

levin@cs.nps.navy.mil
david@marakservices.com

5University of Southern California
Department of Electrical

Engineering-Systems
Los Angeles, CA 90089, USA

prasanna@ganges.usc.edu

6GridIQ
 13833 Adrian St

 Poway, CA 92064-3453, USA
rffreund@gridiq.com

July 2003

Submitted to Cluster Computing
Corresponding author: Jong-Kook Kim

Abstract

When users’ tasks in a distributed heterogeneous computing environment (e.g., cluster of heterogeneous

computers) are allocated resources, the total demand placed on some system resources by the tasks, for a given

interval of time, may exceed the availability of those resources. In such a case, some tasks may receive degraded

service or be dropped from the system. One part of a measure to quantify the success of a resource management

system (RMS) in such a distributed environment is the collective value of the tasks completed during an interval of

time, as perceived by the user, application, or policy maker. The Flexible Integrated System Capability (FISC)

measure presented here is a measure for quantifying this collective value. The FISC measure is a flexible multi-

dimensional measure, and may include priorities, versions of a task or data, deadlines, situational mode, security,

application- and domain-specific QoS, and task dependencies. For an environment where it is important to

investigate how well data communication requests are satisfied, the data communication request satisfied can be the

basis of the FISC measure instead of tasks completed.

Keywords: cluster computing; distributed computing; heterogeneous computing; performance metrics; resource
management system.

- -

1

1. Introduction

In many distributed heterogeneous environments, the tasks that are executing have different quality of service

(QoS) requirements. These different QoS requirements impose different machine and resource requirements.

Furthermore, these tasks may require input data from a variety of distributed sources. Mixed-machine heterogeneous

computing (HC) environments (e.g., a cluster of heterogeneous computers) provide a distributed suite of different

types of machines, connected by diverse types of networks, to meet the varied computational and input requirements

of widely varying task mixtures (e.g., [BrS98, Esh96, MaB99]). The goals of a resource management system (RMS)

in an HC environment are to assign communication, computation, and other resources in an attempt to satisfy users’

requests, which may require different types and levels of QoS. When users’ tasks in a distributed heterogeneous

computing environment are allocated resources, the total demand placed on some system resources by the tasks, for

a given interval of time, may exceed the availability of those resources. In this case, some tasks may receive

degraded service, or be dropped from the system. In the evaluation of the performance of an RMS, it is essential to

include: (1) how well it performed its goals or functions and (2) how well it performed compared to other RMSs.

The goal of this research is to quantify the collective value of the tasks completed during an interval of time, as

perceived by the user, application, or policy maker. Intuitively, if one RMS performs better than another in a given

environment, the better RMS would have a higher collective value. This measure can be a part of a metric to assess

the success of an RMS in a certain environment (other parts may include execution time, ability to work with

different operating systems, and user interfaces). This research describes attributes that can be included in such a

performance measure, provides a way to combine them, and discusses other issues such as multiple versions of

tasks, relative importance of the different attributes, a generalization of the measure, and priority levels with classes.

The proposed approach is called the Flexible Integrated System Capability (FISC) measure. It is a multi-

dimensional performance measure, and may include factors such as priorities, versions of a task or data, deadlines,

situational mode, security, application specific QoS, and task dependencies. The FISC measure is a flexible

framework for quantifying the collective value of a set of tasks completed during a given interval of time. It

provides one way of combining the factors listed above. For an environment where it is important to investigate how

well data communication requests are satisfied, the collective value of requests satisfied can be the basis of the

overall performance measure instead of tasks completed.

- -

2

The FISC measure by itself is not an RMS evaluator; other factors, such as RMS execution time, need to be

included. The FISC measure by itself is not a scheduling heuristic, where parameters such as urgency (time to

deadline) or matching of task requirements to machine capabilities are usually included (e.g., [BrS01, BrS02, KiS03,

MaA99, ThB00, ThT00]). The FISC measure can be used to determine the scheduling heuristic that results in the

highest value of the tasks completed, for a given environment. It can also be used to compare, via experimentation

or simulation, the effectiveness of changing the resources available in a given distributed system. Furthermore, the

FISC measure can be incorporated as part of the objective function in a system’s scheduling heuristics.

There are varieties of performance measures that can be considered when analyzing systems (e.g., [SiS82]). In

some situations, a combination of QoS (or performance) attributes must be considered (e.g., [LiA97]). The FISC

measure will be focused on calculating the value of the tasks completed using various QoS attributes. The measure

presented here is one linear instantiation of the FISC measure. As will be discussed, a non-linear measure is also

possible.

This research is part of three related DARPA programs: Quorum [HeK99], Battlefield Awareness and Data

Dissemination (BADD) [DAR99, Roc96], and the Agile Information Control Environment (AICE) [AIC98]. In the

Quorum environment, it is sometimes the case that not all tasks requested can achieve their most preferred QoS by

their deadline. Thus, there must be a performance measure that can determine a collective value of the set of tasks

that were completed in a given time interval by a particular resource management strategy.

One aspect of the BADD and AICE programs involves designing a scheduling system for forwarding (staging)

data items prior to their use as inputs to a local application in a wide area network (WAN) distributed computing

environment. The BADD and AICE systems are similar to the Quorum environment in that, in some situations, not

all data requests will be satisfied with their most preferred QoS by their deadline. Thus, the goal of the scheduler is

to satisfy as many requests as possible in a given interval of time, in a way that has the greatest collective perceived

value.

The performance measure described in this research can be used to evaluate, for a given interval of time, the

total value of tasks completed in the Quorum program or the total value of data received in the BADD and AICE

programs. In this sense, the set of completed tasks for the Quorum program is equivalent to the set of satisfied data

item requests for the BADD and AICE programs. A major difference between Quorum and BADD/AICE is that in

Quorum tasks are assigned to resources by the RMS. In the BADD/AICE program, task assignments are given and

- -

3

fixed a priori, but the movement of data to the tasks must be scheduled. Throughout the rest of this paper, a task will

be used to represent (1) a user’s process execution in the Quorum context and (2) a user’s request for a data item in

the BADD/AICE context. While this research is motivated by military applications, the FISC framework can be

adapted for other environments, such as clusters, intra-nets, and certain computational grids [FoK99].

The test of the goodness of a performance measure for an HC RMS is if it allows a system administrator the

flexibility to quantify how it is desired for the system to behave. Furthermore, the performance measure should

provide a vehicle for comparing the results achieved by different RMSs given the same operational scenario, so that

the best RMS for a given environment can be selected. The FISC measure has these qualities. Thus, the primary

contribution of this work is providing a way to measure the collective value accrued by an RMS using a broad range

of attributes and to construct a flexible framework that can be extended for particular problem domains.

The next section provides a brief overview of some of the literature related to this work. In Section 3, several

examples of individual QoS attributes are presented. These attributes may be considered when formulating the

performance measure to be used in building and assessing RMSs. Section 4 shows how all the example QoS

attributes can be combined into a single measure. In addition, this section presents a baseline for the FISC measure,

discusses a generalized form of the performance measure, and possible variations of the FISC measure. Examples of

where the FISC measure can be used are provided in Section 5. The last section gives a brief summary of this

research.

2. Related Work

The FISC performance measure discussed here embodies parameters that are considered important in

scheduling tasks and communications in a distributed computing system. There is much literature on parameters

considered important when scheduling and mapping; in this section, some examples of this literature are mentioned.

This is followed by a discussion of examples of prior performance measure studies that the FISC measure extends.

An optimistic priority-based concurrency control protocol that schedules active transactions with a deadline in

real-time database systems is described in [KiS94]. This protocol combines forward and backward validation

processes to control more effectively concurrent transactions with different priorities. The protocol is designed such

that deadlines of higher priority transactions have a greater probability of being met than those of lower priority

- -

4

transactions are. While this is also the case for Quorum and BADD/AICE, the FISC research presented here includes

other attributes that are important in evaluating the overall value of the tasks completed.

In [LiM94], laxity (deadline minus latency) of a task is used for the scheduling, adjustment, and dropping of

messages. The “Least-Laxity-First (LLF)” scheme gives an improved missed deadline ratio, which is the rate of

messages missing their deadlines. In [LiM94], only the timing constraints are used in the scheduling of messages

and evaluation of the LLF scheme, but the research effort does not consider other QoS attributes used in

heterogeneous distributed networks that the FISC measure includes.

The work presented in [Mar90] describes an algorithm that enables each node of a system to schedule the

transmission of messages generated locally while obeying their deadline constraint (messages get dropped if they

cannot meet their deadline). This algorithm uses the actual priority and the deadline of a message for the scheduling

of the messages. The FISC measure allows more than one simple deadline and includes other important QoS

attributes in the calculation of the collective value of tasks completed, which can be used as part of a scheduling

process.

Data staging, an important data management problem for a distributed heterogeneous networking environment,

is discussed in [ThT00]. The research in [ThT00] assumed that each requested data item is associated with a specific

deadline and priority. The FISC research presented here generalizes the performance measure used in [ThT00] to

include more types of deadlines and other QoS attributes.

From the works mentioned, parameters such as task priorities and deadlines appear to be important attributes for

making scheduling decisions. A measure of the overall value accrued of completed tasks is needed that can be used

in an objective function to compare and analyze RMSs while incorporating all the QoS parameters used. The works

mentioned above consider only a subset of the QoS parameters that might be present in a distributed system. Other

parameters (e.g., accuracy, precision, and security) that are QoS requirements and part of the users’ requests must

be included in the performance analysis. The QoS parameters that affect the overall value of requests satisfied are

discussed in our research.

The FISC research on the performance measure presented here builds on and extends a body of earlier work in

this field. Some examples are mentioned here.

The ERDoS project [ChS98] describes an objective function for optimizing the effectiveness of its QoS

scheduling mechanisms in meeting clients’ needs. This function reflects the benefit received by the user and a

- -

5

weight is assigned to each user application. An approach where requested QoS is taken into account when

scheduling computational resources in a network is presented in [Mah99]. The model proposed a benefit function

that uses application deadlines and application priorities as metrics in maximizing the total benefit for the

applications. The incorporation of multiple versions of a task, in addition to priorities and deadlines, in the objective

function is described in [Kre97]. The FISC measure serves a purpose similar to the performance measures in

[ChS98, Mah99, Kre97]. However, the research presented here provides a more detailed description of a measure

using more parameters, so that it can be used to compare the performance of schedules in the Quorum and

BADD/AICE environments. Furthermore, the QoS input specification for ERDoS [SaC97] accounts for only two

specific security parameters (confidentiality and integrity), whereas the security component of the FISC measure can

describe an arbitrarily complex set of security features.

The resource allocation model for QoS management proposed in [RaL97] indicates multiple dimensions of QoS

and multiple resources. In [RaL97], some of the QoS attributes studied in this research are mentioned, however there

is no detailed description or discussion of those attributes. The utility that is described in [RaL97] is same as the

value accrued in a given time interval using a set of resources. The FISC research discusses QoS attributes in more

detail and gives more QoS factors to consider. Work done in [LeL99a, LeL99b] presents specific usage of the model

presented in [RaL97]. These use only a subset of QoS attributes that the FISC research describes, indicating that the

FISC measure would be a generalized version of what they have used as the utility function.

The work in [WaW98] proposes a market mechanism that uses the length of a job, the deadline of a job, the

price of the job done, and the price of allocated time slots to find the optimal allocation of jobs onto resources. The

FISC measure uses priorities and other QoS measures to calculate the collective value of tasks that are completed.

The research in [Mar99] describes a utility function that considers the throughput and the link congestion of the

network and extends their analysis to QoS sensitive requests. The utility function described in [Mar99] and the FISC

measure both seek to achieve the optimum value of the requests satisfied. In our paper, multiple QoS attributes (e.g.,

deadlines, security) are considered in detail while in [Mar99], the QoS factor is represented by the link congestion.

In the model proposed by [CoS99], a function that indicates the utility due to QoS attained when a certain

bandwidth is allocated to the user and the “willingness-to-pay of the user” factor is used to calculate the net benefit.

The FISC measure and the utility function are similar in that they calculate the overall value achieved from the

resources allocated. While [CoS99] considers only bandwidth, the FISC research discusses one way to combine

- -

6

different QoS attributes to result in a framework for determining the total value accrued from completing tasks in a

given interval of time.

A security policy that allows a percentage of packets authenticated to vary with network load is described in

[ScS98]. This type of policy can be accommodated with the variant components included in the FISC security vector

(see Subsection 3.4). Related work on network security policy specification languages can be found in [BaS95,

BlF96, CoL98, RyN98]. While the FISC security vector contains a set of Boolean security policy statements, it does

not specify a general-purpose language for these statements. A framework for quantifying the strength of a set of

security mechanisms is described in [WaW97], where high-level static security properties can be decomposed

hierarchically. However, in [WaW97] the approach cannot accommodate the measurement of how well an executed

task meets the security requirements of its environment. Nor does [WaW97] account for variant security policies or

mechanisms.

3. Example QoS Attributes

3.1. Priorities

Policy makers determine the number of priority levels available within a system and assign some semantic

meaning to each priority level, such that the relative importance of each level is qualitatively reflected (e.g., high,

medium, and low). The policy makers may be the commanders in a military environment or executives in a

corporation. Policy makers may assign different users, or classes of users, restricted ranges of priority levels that can

be assigned to their tasks. Alternatively, a task itself could have an immutable priority level assigned to it by the

policy makers. Each priority level will then be given a weight that can be calculated by a priority weight function,

which is pre-determined by policy makers, described later in this section.

Priority levels with relative, quantitative weightings should be incorporated in scheduling systems so that a task

with a higher importance will have a higher probability of meeting its QoS requirements. Application users and

system builders often assign an arbitrary numbering scheme to priority levels that does not meaningfully quantify

the relative importance of one priority level to another. A more meaningful weight must be assigned to each priority

level so that t he relative importance can be reflected in the performance measure.

The relative importance (weighting) of priority levels may vary depending upon the situational mode. For

example, there may be military modes of peace and war. In peace mode, it might be just as important to complete

- -

7

ten low priority level tasks as to complete one high priority level task. However, in war mode, one high priority level

task might be more important than 1,000 medium priority level tasks. To indicate this relative importance, for

example, it may be necessary to give weightings of 10,000 to high priority level tasks and 10 to medium priority

level tasks. This dependency can be indicated in the performance measure by expressing the weight of all priority

levels as a function of the situational mode.

It is assumed that the FISC measure is being used to compute the value of a subset of tasks successfully

completed, during some time interval, from a set of t tasks that have been requested. Let the priority level (e.g., high,

medium, low) of task j (0 ≤ j < t) be pj, and let m be the situational mode. The priority weight function π (pj)

calculates the weight of pj given the situational mode m. The weight assigned to a priority level may be considered

to be the maximum value of completing the corresponding task.

3.2. Versions

A task may exist in different versions, each with its own resource requirements. Because of system load, it may

not be possible to complete the most desired version of a task. For example, a user requesting a map application may

most desire a 24-bit color, three-dimensional topographical map. However, if this cannot be given to the user due to

limited resources, the user would rather have a black and white, two-dimensional map than nothing at all.

When a user’s first choice of a task version cannot be completed, a method for choosing an alternative version

is needed. Having multiple versions of a task is related to the precision and accuracy parameters discussed in

[SaC97], in the sense that each version of a task may have different accuracy and precision, or to having different

video image sizes considered in [XuN01]. For each version of a given task, a worth (preference) relative to the other

versions will be indicated by the application developer, the user, or the policy makers. These worths may be a

function of the situational mode. In the above example, the black and white version may only be worth 75% of the

color version to the user. When selecting a version of a task to execute, an RMS’s scheduling algorithms must

consider this worth and the task’s resource requirements as well as the availability of these resources. For example,

one version may not be viable because its bandwidth requirement is too high. Typically, a higher worth version has

greater resource requirements.

To allow worths to be quantified in an arbitrary format, the worths assigned to different versions of a task must

be normalized so that there is a consistent scheme for evaluating worths across tasks and versions. For example,

- -

8

assume that all factors except version worths are equal across a set of tasks. The user can specify any number for the

worth of a version as shown in Table 1 (a). Therefore, without a normalization procedure, a task with the largest

worth version may always be chosen for processing ahead of other tasks for no logical reason. For example, if there

is enough resources to complete one version of one of the tasks in Table 1 (a), task 1 will be chosen over all other

tasks because version 2 of task 1 has the highest worth among all the versions of all the tasks. In extreme cases,

worths that are not normalized could supersede the impact of priority depending on how priorities and worths of

version interact.

To avoid this type of anomalous behavior, worths are normalized as follows. Assume there are Ij versions for a

given task j. Let vij be the i-th (0 ≤ i < Ij) version of task j. Let wij(m) be the worth the user assigns to i-th version of

task j given m, the situational mode. Example wij(m) values are provided in Table 1(a). One approach to the

normalization problem is to divide each indicated worth of a task version by the largest worth for that task, resulting

in the normalized worth as shown in Table 1(b). Thus, the normalized worth (ηij) of wij(m) is given by

0

ij
ij

ij
j

w (m)

w (m)max
i I

η = � �
� �
� �

≤ <� �

 (1)

Figure 1 is the graph representation of the normalized worth shown in Table 1(b). Therefore, the version with the

largest worth of each task will have a normalized worth of 1 and the rest of the versions will have normalized worths

that are relative to the version with the largest worth.

Another approach to the normalization would be to divide each version’s worth by the total sum of the version

worths of the task. This would not guarantee equal value for the most preferred version of each task. Furthermore,

this approach may allow a greedy user to obtain a higher value for a given task’s preferred version over another

task’s most preferred version. For example, consider task 0 and task 1 in Table 1(a). If this alternative approach is

used, the normalized worth for task 0 would be 0.1, 0.1, and 0.8, while for task 1 it would be 0.25, 0.35, and 0.4.

This means that, even if task 0 and task 1 have the same priority, the largest worth version of task 0 is worth more

than the largest worth version of task 1, which should not be the case.

- -

9

3.3. Deadlines

Many tasks in typical heterogeneous computing environments have deadlines associated with them. Frequently,

due to limited resources and the multiplicity of tasks sharing these resources, not every task can be completed by its

deadline. Three types of deadlines will be considered for the i-th version of task j: earliest , soft , and firm. These

deadlines are illustrated by example in Figure 2. The deadline attributes are related to the timeliness parameter in

[SaC97].

The earliest deadline (eij
d) is the time when the task can start. For example, assume that data is being sent to a

system is to process it. The task of sending data cannot start if the receiving system is not ready and it will have no

value.

The soft deadline (sij
d) is the time by which a task must complete to be of full value to the user [StS98]. If a task

is completed between the earliest deadline and the soft deadline, then the task will have its maximum value.

A task that is completed after its firm deadline (fij
d) will have 0 value, because the task will be of no use after

that deadline [LeK96, StS98]. For example, if a task that shows a map of an area completes after a mission is

finished, then it will have no value. If a task completes between its soft and firm deadline, then it will have some

fraction of its maximum possible value. For each task, the fraction of total value for each point between the soft and

firm deadlines, and the time between the soft and the firm deadlines, may be a function of the situational mode. For

example, during war mode, the soft and firm deadlines may be identical.

Let τij be the time that the i-th version of task j actually completes. The deadline function δij assigns a fraction of

the maximum value of the i-th version of task j based on m, τij, eij
d, sij

d, and fij
d, where 0 ≤ δij ≤ 1. The deadlines eij

d,

sij
d, and fij

d may be the same for all versions of a certain task. A characteristic function δij′ is used to represent

whether a version completes with a δij > 0: δij′ = 1 if δij > 0, and δij′ = 0 if δij = 0. If no version of task j is completed,

δij = 0 and δij′ = 0 for all versions of the task.

3.4. Security

User and task security requirements are met by “security services.” Overall network security can be viewed as a

multi-dimensional space of security services. This multi-dimensional space can be represented with a vector (S) of

security components, where the functional requirement for each component is specified by a Boolean statement for

each given situational mode. Both resources and tasks may have multiple security components [IrL00a, LeI99b].

- -

10

 The instantiation of a network task either meets, or does not meet, each component’s requirement. For example,

consider the i-th version of task j. Let Rij be a set of resources utilized by vij and let Sij be a sub-vector of vector S. A

component κ in S is in Sij if and only if κ depends on vij or on an element of Rij, and is denoted Sij.κ. The

characteristic function σij′ is used to represent required security attributes. If minimum security requirements are not

all met, there is no value accrued for executing vij and σij′ = 0. If the instantiated Boolean value of all κ in Sij is true,

then σij′ = 1.

Additionally, some security components of a task can be variant in that they allow a range of behavior with

respect to a requirement (e.g., length of cryptography key may vary between 40 and 256). For variant components,

the user may request a particular value or permit a choice from a component’s defined range. The RMS must select a

specific value within the user’s range, while considering resource availability, for the completed task to have a non-

zero value. The measure will give only partial credit for a task completed with less than the most secure value in the

defined range.

The desire to provide adaptable security motivates the inclusion of variant security components in the system

[IrL00b]. Thus, security affects the performance measure when components are variant. For example, assume the

percentage of authenticated packets can range between 50% and 90% in increments of 10%. The increment

quantizes the range. Let [Sij.κ] be the number of quanta in Sij.κ (in the above case, this is five) and gij.κ be the

fraction of κ in Sij satisfied. If a task achieves the third quantum (70%), then gij.κ is 3/[Sij.κ] = 3/5 = 0.6. This

example can be represented as a graph as shown in Figure 3.

Suppose n is the number of security components in Sij. To quantify the effectiveness of the RMS in providing

variant security, let security factor σij be the sum of all gij.κ divided by n as shown in Equation 2.

.cij

ij
Sij

g

nκ
σ

� �
� �

= � �
� �

∈� �

�
. (2)

The above is just one possible way to combine the values of these security components. For example, the gij.κ

values in Equation 2 can have relative weightings for a given m. Thus, if the military situation changes from peace

to war, authentication may be considered relatively more important and might be given a higher relative weighting.

The overall security measure is σij × σij′, where 0 ≤ σij × σij′ ≤ 1. It indicates how the value of a task may be

degraded due to lack of its most desirable security services or a lack of meeting its minimum requirements.

- -

11

3.5. Application Specific QoS

The model for application specific QoS is analogous to the security model in Subsection 3.4. There is a multi-

dimensional space of application QoS attributes (e.g., jitter level, frame rate, bit error rate). For example, in

[XuN01], the frame rate, image size, number of trackable objects, and buffer sizes are the application specific QoS

attributes of the video streaming and tracking service (application). The overall application specific QoS measure is

αij × αij′. where αij and αij′ are analogous to σij and σij′ respectively. It indicates how the value of a task may be

degraded due to lack of its most desirable application specific services or a lack of meeting its minimum

requirements.

3.6. Associates

There are many possible types of inter-task dependencies, e.g., for the MSHN environment, consider a task

whose only function is to generate data for other tasks (descendants). There may be an inter-related set of such tasks

(Figure 4). If there is a descendant along a dependency path of tasks that generates an output for a user (e.g., tasks 4

and 6 in Figure 4) and if this descendant completes its execution, then the tasks that did nothing more than generate

data for this particular task will have value, otherwise they will not. This is because the end user that submitted a

task for completion will acknowledge the task to be finished only when the actual results can be determined. Thus,

for a task to have value, either it or one of its descendants must generate an output for a user.

The first task in a dependency path that does more than generate data for a subsequent task will be known as a

required associate of its predecessors. The variable ρij will represent whether a required associate of a given task

completes; i.e., if at least one required associate of a given task completes, then ρij = 1, otherwise ρij = 0.

For the BADD/AICE environment, consider a data request whose only function is to be used by an application

to generate data for other applications. There may be multiple data requests for a given application. Unless all such

data requests are satisfied, the application cannot execute and the value of any data request and the application that

are satisfied would be zero (i.e., ρij = 0 for all data requests). In Figure 5, data requests 1, 2, and 3 are required for

application 1 to execute. Therefore, if any one of these data requests is not available (if only a subset of the data

requests arrive by the firm deadline), there is no value for any of the satisfied data requests.

- -

12

4. Performance Measure

4.1. FISC Measure

A meaningful way to combine the attributes discussed in the previous section is proposed here. The measure

presented here is only one instantiation of the FISC measure. In general, it is a difficult problem to determine

whether a distributed system has delivered “good” service to a mixture of applications. For example, some

applications may be compute-intensive and others interactive, perhaps having stringent security requirements. In this

research, the collective value of services achieved is used for determining how “good” a resource allocation is. A

meaningful way to combine the performance attributes previously discussed is proposed in this subsection.

Consider a set of tasks with different priorities, different deadlines, multiple versions, different security and

application specific QoS requirements, and dependencies. The value of a task must be calculated based on all of the

attributes.

The maximum value of task j is π (pj); therefore, other attributes must be combined in a way that the maximum

value of a task never exceed its priority weighting. In addition, all performance attributes must be included in the

calculation of the value of a task. The factors that describe whether a minimum requirement of an attribute is met

must be included. These are ρij, δij′, σij′, and αij′, and each function is equal to 0 if minimum requirement is not met

or 1 if the minimum requirement is met. The intuition is that if a task does not meet its minimum requirement, the

task is of no value to the user. Also, the RMS must consider any variations in the value of a task’s completion that is

a result of when a task completes (δij), which version was used for the task (ηij), and receiving different degrees of

required and desired security (σij), and other application- and domain-specific QoS services (αij). Equation 3 is one

way to combine all performance attributes. The “max” function is used to indicate whether a version of a task has

completed. Note that if a version of a task completes then all other versions are not completed and their calculated

values are zero. To make the value of “max” less than or equal to one, the value of δij, ηij, σij, and αij is averaged as

shown in Equation 3. This also gives the variable component of each attribute equal weighting.

1
max

400

ij ij ij ij
j ij ij ij ij

j

t
(p)

i Ij

η δ σ α
π ρ δ σ α

+
� �

− + +� �
′ ′ ′× × × × ×� �

≤ <= � �
∑ (3)

This version of FISC will be called the averaged FISC. This method is similar in concept to the benefit function

described in [IrL00a, IrL00b].

- -

13

There can be coefficients for each attribute mentioned in this research to indicate the relative importance of one

attribute to another. Let cη, cδ, cσ, and cα be the coefficients of η (version used), δ (deadline met), σ (security

services satisfied), and α (application specific QoS satisfied) factors respectively. To incorporate coefficients into

the FISC measure, another version as shown in Equation 4 of the FISC is needed. For the coefficients to not affect

the overall priority weighting and to indicate the relative importance among the attributes, the measure will be

divided by the sum of the coefficients. By dividing the measure by the sum of the coefficients, the part of the FISC

measure without the priority function will be one when all attributes are 100 percent satisfied and less than one when

a certain task gets degraded QoS.

1
max

00

ij ij ij ij
j ij ij ij ij

j

t c c c c
(p)

c c c ci Ij

η δ σ α

η δ σ α

η δ σ α
π ρ δ σ α

+
� �� �

− × × + × + ×� �� �
′ ′ ′× × × × ×� �

+ + +≤ <= � 	

 (4)

In addition to an optimization criterion such as the FISC measure, constraints are required to define any

optimization problem. There is a limited amount of resources so there is a constraint on resource. Therefore, in any

time instant, the total amount of resource used of a particular resource cannot exceed the total available resource at

that time instant. Assume that there is Ξ number of resources in the system. Let Rrj(∆) be the amount of resource r

(0 � r < Ξ) used for task j (0 � j < t) during the time interval ∆ and let Ur(∆) be the total resource r that is available

during time interval ∆. The sum of all Rrj(∆) cannot exceed Ur(∆) as explained in Equation 5.

1

0

t

j

−

=
∑ Rrj(∆) ≤ Ur(∆) for resources r = 0 … Ξ −1 (5)

It is possible that multiple versions of the same task or multiple copies of the same version can be attempted for

fault tolerance or for maximizing the speed of the process. Then the FISC equation can be extended to include vijγ,

where i is the version, j is the task, and γ is the copy number (0 � γ < Γj). The FISC measure can be extended from

Equation 4 to Equation 6 (averaged FISC with coefficient and multiple copies of versions). The goal would be to

maximize the FISC measure over all relevant i and γ for j. For each copy of a version there could be different

deadlines, security services, or application specific QoS. Therefore, these factors also need to consider the copy γ of

the version. Because dependency is only among tasks not versions of a particular task, the dependency factor does

not need to consider the copy number.

- -

14

0

1
max

00

ij ij ij ij
j ij ij ij ij

j�
j

t c c c c
(p)

c c c ci Ij

η γ δ γ σ γ α γ
γ γ γ

η δ σ α
γ

η δ σ α
π ρ δ σ α

+

≤ <

� �
� �� �

− × × + × + ×� �� �
′ ′ ′× × × × ×� �

+ + +≤ <=
� �
� �
	

�
 (6)

The FISC measure presented can be used to compare the performance of different RMSs operating in the same

environment. A direct comparison using the FISC measure of two RMSs that operate in two different environments

would not make sense. One method to compare different RMSs operating on different distributed systems, is to

normalize the FISC measure by a baseline that depends on the tasks and underlying distributed system. The baseline

can be calculated by using the same number of tasks with same attribute requirements for each environment and

these baselines may be different. Because the environments are different, how well a RMS performed would equal

to how much better it performed than the baseline of its environment. If the RMS cannot perform much better than

this baseline, then a naive algorithm for resource assignment would perform almost as well as the RMS. The

baseline builds upon and extends the example given by [ThT00]. The algorithm used to compute the baseline uses

the concept of perfect completion. A task is said to achieve perfect completion if there exist available resources, to

which it can be assigned, that would allow it to complete with ηij = δij = σij = αij = 100% and ρij = 1. This means that

in given situations (i.e., resource availability, situational mode) tasks with the most preferred version, all security

services and application specific QoS are satisfied 100%, a required associate that completes, and completion time

before the soft deadline are considered.

A simple algorithm, which assumes knowledge of the expected resources needed by a task to complete, can be

used to obtain a baseline. For the results of the obtained baseline to be reproducible within a certain tolerance, an

ordering of the tasks is needed. The algorithm to obtain a baseline is shown in Figure 6 and proceeds as follows.

First, it assigns an ordering to the tasks according to their priorities (highest first), deadlines (soonest first), and

expected execution times (shortest first) where the above criteria are considered in the aforementioned order. For the

tasks with the same priority level, the deadline would be used as a tiebreaker. If tasks have same priority level and

deadline, the expected execution time would serve as a tiebreaker. Only if tasks have the same priority, deadline,

and expected execution time would the ordering be random. Alternatively, additional characteristics of the task

could be used for finer ordering. In other problem domains, other parameters could be more appropriate for ordering

the tasks.

- -

15

After the ordering, the algorithm determines whether the first task (according to the ordering) can be expected

to achieve perfect completion using the available resources. If so, it computes the expected availability of resources

after that task has completed, under the assumption that the task uses the first such available resources. It also adds

the weighted priority of this task to the baseline, which was initialized to 0. If a task cannot achieve perfect

completion, nothing is added to the baseline and the task is not considered again. The same process is repeated for

each task, considering them according to the ordering.

When the FISC measure is normalized by a baseline, the resulting function is called the FISC ratio. The

averaged FISC ratio is:

0

1
max

00

baseline

ij ij ij ij
j ij ij ij ij

j�
j

t c c c c
(p)

c c c ci Ij

η γ δ γ σ γ α γ
γ γ γ

η δ σ α
γ

η δ σ α
π ρ δ σ α

+

≤ <

� �
� �� �

− × × + × + ×� �� �
′ ′ ′× × × × ×� �

+ + +≤ <=
� �
� �	

�

 (7)

Another version of FISC that will be called the multiplied FISC is presented. Similar to the averaged FISC, this

version must consider all attributes and make sure that the “max” never exceeds 1. A way to accomplish this is to

multiply all components of the measure (ηij, ρij, δij, δij′, σij, σij′, αij, and αij′) as shown in Equation 8.

()1
max

00
j ij ij ij ij ij ij ij ij

j

t
(p)

i Ij
π η ρ δ δ σ σ α α

�
− � �

′ ′ ′× × × × × × × ×� �
≤ <= � �

∑ (8)

Both versions of the FISC measure (averaged and multiplied) mentioned in this subsection may be used to

calculate the collective value of the tasks completed. The averaged FISC (Equation 3) captures the intuition that

when calculating the value of a task, the value should be larger than or equal to the percentage satisfied of the least

satisfied service attribute multiplied by the priority weighting of the task. For example, there is a task completed

with a version that is worth 50%, the task was completed before the soft deadline (100%), the task received variable

security services (40%), and assume π(pj) is one. Assume all minimum requirements are met and all other variable

services do not exist. The completed task’s value would be 0.63 by the averaged FISC (Equation 3) and 0.2 by the

multiplied FISC (Equation 8). When using the multiplied FISC, the value of the task has decreased below the

security services satisfied (40%). When all of a task’s services are at least 40% satisfied, the value of the task should

be larger than or equal to 40% of the maximum value of a task.

- -

16

4.2. Generalization of FISC Measure

The previous subsection describes a particular example of the FISC measure. It can be generalized such that the

numerator is any function of π(pj, m), ηij, ρi j, δij, δij′, σij, σij′, αij, and αij′, (or other factors), and each of these

primary factors can be any function of secondary factors (e.g., primary factor σij includes an average of gij.c

secondary factors in the security context described in Subsection 3.4). Let Py be a primary factor where there can be

u number of primary factors (0 � y < u) and se be a secondary factor where there can be vy number of secondary

factors (0 � e < vy). The generalization of FISC measure can be represented as

 FISC = f(P0, P1, … , Pu−1)/ baseline and (9)

 Py = fy(s0, s1, … , sv y −1), (10)

where each se is a secondary factor for Py. Linear or nonlinear weightings (coefficients) of each factor, depending on

the importance of the factor considered in a given environment, may be included in all the functions of primary and

secondary factors.

The baseline algorithm described in Subsection 4.1 is one method of normalizing the numerator of the FISC

measure. Other methods for normalizing could be incorporated to compare the performance of different RMSs in a

given environment.

4.3. FISC Measure with Priority Levels within Classes

In some environments, it may be the case that all higher priority level tasks must be attempted for execution and

completion first, before any of the lower priority level tasks can be considered. For example, if there are high,

medium, and low priority level tasks, the high priority tasks will be considered first and if there are no more high

priority tasks, then medium and low priority level tasks will be considered for execution. In this scheme, a higher

priority level task is worth more than any number of lower priority level tasks (i.e., highest priority level task is

worth an infinite number of lower priority level tasks). To represent this, classes of priority levels will be needed. If

all the tasks of a certain class have been considered for the calculation of the FISC number, then the tasks of the next

class will be considered for calculation.

Each task will have a priority level, and priority levels will have relative weightings. Tasks will not have classes

but the priority level that the task was assigned with may correspond to a class predetermined by the system

administrator or the policy maker. Each class will consist of one or more priority levels and there can be several

- -

17

classes where the number of priority levels assigned to a class can be different. For any number of classes, the FISC

number, which is calculated using the FISC measure, of class k is more important than the FISC number of class k+1

where k is an arbitrary number. Therefore, when comparing the accrued value of one scheduler to another, the FISC

number of the highest class will be compared first and if they have equal FISC numbers, the FISC number of the

next highest class will be compared.

As shown in Figure 7, there could be L number of priority levels and C number of classes. Priority level 1 is

more important than priority level 2 and class 1 is more important than class 2. Any number of priority levels can be

in one class. After calculating the FISC number for class 1 (priority 1 tasks) of schedulers, compare the number and

if the number is same, calculate the FISC number for the next class of tasks.

5. Examples of Where FISC can be Used

5.1. QuO Middleware

The Quality Objects (QuO) middleware is a set of extensions to standard distributed object computing

middleware that is used to control and adapt quality of service in a number of distributed application environments,

from wide-area to embedded distributed applications [LoS01]. Several examples of QoS attributes that are used in

real applications are described.

The first example is data dissemination in a wide-area network. In cases where the network is the source of a

slowdown in the system and bandwidth reservation is not successful, the QuO middleware triggers application

adaptation. The application trades off its data quantity or data quality requirements for its timing requirement, by

requesting smaller images or lower resolution images to reduce the amount of network congestion. If the CPU is the

source of slowdown, the application requests unprocessed images reducing the load on the CPU and enabling the

images to be received faster but with reduced quality or analysis of the images. To evaluate the overall performance

of the network, the FISC measure can calculate the value of the requests completed using the normalized worth ηij

(assuming each request has some kind of preference for different image sizes, resolutions, quality, or analysis) and

the deadline graph (example shown in Figure 2). If the request received a lesser quality image than it had preferred,

the request is receiving degraded QoS and the FISC measure will indicate this by giving the request a lower value

than the maximum it can get.

- -

18

The second example is dynamic mission planning in an avionics platform. In this example, QuO is used to

manage the trade offs of timeliness versus image quality by image compression, image tiling, processor resource

management, and network resource management. Using the FISC measure as described in the first example, the

overall performance of the trade offs can be evaluated.

In the third example, Unmanned Air Vehicle (UAV) data is disseminated throughout a ship. While the data is

sent out, system condition objects monitor the frame rate and the host load on the video display hosts. As the frame

rate declines and/or the host load exceeds a threshold, they cause region transitions, which trigger the video

distribution process to drop frames going to the display on the overloaded host and the video display on the

overloaded host is told to reduce its display frame rate to the rate at which frames are being sent it. The application

specific QoS attribute described in Section 3.5 can be used. If the frame rate is reduced from the most preferred

frame rate (therefore receiving degraded service), the value of the task of sending frames over the network will be

determined using αij (a graph similar to the one shown in Figure 3 may be used), and αij′.

While the QuO system monitors system loads, makes trade-offs of timeliness versus image quality, and

degrades QoS attributes while dropping frames and reducing display frame rate, it needs a performance measure that

can estimate how well these activities were done in terms of the overall performance. The FISC measure can provide

a framework for estimating the overall performance of such a system.

5.2. EADSIM

As an example of how the FISC measure might be applied in practice, consider the following scenario. The

Joint Force Air Component Commander (JFACC) staff are preparing an Air Tasking Order (ATO). As the ATO

develops, one tool available to the JFACC staff for its evaluation is the Extended Air Defense Simulation

(EADSIM) system from the US Army Space and Missile Defense Command. EADSIM is a warfare modeling

application offering great flexibility in the areas modeled, the capabilities of the platforms simulated, and the

method of simulation (deterministic or stochastic) [Por99].

EADSIM utilizes a wide range of computing resources, depending on the features enabled. For example, the

stochastic mode may use approximately 20 times the computing resources as the deterministic mode (based on the

number of runs required to obtain a statistically significant number of samples). Of course, results obtained in

stochastic mode are likely to be more reliable.

- -

19

The JFACC planners select two versions of EADSIM, the stochastic mode and the deterministic mode, and

submit them, with different preferences, to their RMS for execution. Because this information is urgently needed for

combat mission planning, the priority of this request is seven on a scale of ten (ten being highest). Using the priority

level, pj of the request, the priority weighting can be calculated using a predetermined function π (pj). The request

has a firm deadline and the results are required in an hour after the request is submitted. The deadline graph shown

in Figure 2 with the soft deadline being the same with the firm deadline can be used. Therefore, if the results are

received within an hour then δij = 1 and the overall value of the request is still π (pj). However, if the results are not

presented after an hour, they have no value (δij = 0). The stochastic version is preferred because it will produce

higher confidence results, but the deterministic simulation may also be useful because of faster execution time.

Assume that the stochastic version is assigned a preference of eight, on a scale of ten and the deterministic version is

assigned a preference of five. Using the FISC measure, the preferences can be normalized and the normalized worth

(ηij) of the stochastic version is 1 and the ηij of the deterministic version is 0.625. If there is enough resources to

complete only one of the two versions and these are the only ones to choose from, then the stochastic version will be

completed because it has a higher worth than the deterministic version. The security level scheme is binary. The

information must be sent over a secure link. If it is, the request is assigned a security value of 1 (σij′ = 1), if not, it is

assigned a security value of 0 (σij′ = 0). The FISC measure determines how well a request is satisfied in terms of

value accrued.

An RMS such as MSHN would evaluate the expected resource requirements of each version as well as the

ability to complete each version based on the current resource availability. Using this information, the RMS could

make a decision by maximizing an objective function where the FISC measure would be a major component.

6. Summary

In some environments, the distributed heterogeneous computing system may be over-subscribed, where the total

demand placed on system resources by the tasks, for a given interval of time, exceeds the resources available. In

such environments, users’ tasks are allocated resources to simultaneously satisfy, to varying degrees, the tasks’

different, and possibly conflicting, quality of service (QoS) requirements. When tasks are allocated resources, some

tasks will receive degraded QoS or no service at all. The FISC measure provides a way to quantify the value of the

performance received by a set of applications in a distributed system. By using the FISC measure, the effectiveness

- -

20

of the mapping of a collection of requests to resources done by a scheduler can be evaluated in terms of value as

perceived by the user, policy maker, administrator, or system. In addition, it may be used in a simulation mode to

analyze the impact of proposed changes to the distributed system. For the FISC measure to be more flexible, a

generalization of the measure is discussed as well as the use of classes in addition to priority levels. Examples of

how the FISC measure can be used are presented for two different environments.

The FISC performance measure presented here will help the distributed computing community in the

implementation of resource management systems and the analysis and comparison of such systems. Furthermore,

the FISC measure may be used as a critical part of a scheduling heuristic’s objective function.

Additional issues that may be considered in future research include: how to determine the relative weighting of

the π (priority level weighting), η (version used), ρ (required associate present or not), δ (deadline met), σ (security

services satisfied), and α (application specific QoS satisfied) factors; using a non-linear combination of task values

to compute the overall measure; whether to use negative fractions in the deadline function in case of catastrophic

results from a missed deadline; how to incorporate FISC measure in a scheduling heuristic; investigating other

factors that are important in calculating the value of a task to the user; and investigating variations in the factors

already considered.

Acknowledgments: The authors thank, B. Beaton, G. Koob, J. Rockmore, M. Jurczyk, I. Wang, S. Jones, J. Kresho,

E. K. P. Chong, R. Eigenmann, N. Rowe, C. Kesselman, N. Beck, T. Braun, S. Ali, S. Chatterjea, A. Naik, and P.

Dharwasdkar for their valuable comments and suggestions. A preliminary version of portions of the material was

presented at the 10th Heterogeneous Computing Workshop.

- -

21

Table 1: (a) Worths that users indicate for each version of a task. (b) The worth for each version of a task is divided
by the largest worth of that task to get the normalized worth.

task version 0 1 2
0 1 1 8
1 25 35 40
2 .2 .3 .5
3 .1 .2 .7

(a)

task version 0 1 2
0 .125 .125 1
1 .625 .875 1
2 .4 .6 1
3 .143 .286 1

 (b)

Figure 1: Graph representation of the normalized worth of each version of a task.

Figure 2: The deadline graph shows the variation in the value of a task with various deadlines.

earliest soft firm

time

fr
ac

tio
n

of
 v

al
ue

0

0.2

0.4

0.6

0.8

 1

0

0.2

0.4

0.6

0.8

1

version 0 version 1 version 2

task 0

task 1

task 2

task 3

fr
ac

tio
n

of
 v

al
ue

- -

22

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

50% 60% 70% 80% 90%

authenticated packets

fr
ac

tio
n

sa
tis

fie
d

Figure 3: Graph representation of fraction satisfied of authenticated packets that can range between 50%
authenticated and 90% authenticated, incremented by 10%.

Figure 4: An example set of tasks that have dependency. Tasks 1, 2, 3, and 5 are tasks that only generate input data
for other tasks. Tasks 4 and 6 generates output for the user.

task 1:
generates data for task 2

task 2:
generates data for task 4

task 4:
(a) outputs target identification
(b) generates data for task 5

task 5:
generates data for task 6

task 6:
outputs launch coordinates

task 3:
generates data for task 4

- -

23

Figure 5: An example set of data requests that have dependency. Data requests 1, 2, and 3 are required input data
for application 1.

Figure 6: Baseline algorithm

Figure 7: Example of priority levels within classes.

data request 1:
required data for

application 1

data request 2:
required data for

application 1

application 1:
outputs data for other applications

data reqeust 3:
required data for

application 1

all given tasks are ordered by priority, deadline, and expected
execution time;
if all are equal, order is random;

for each task{

if a task can get ηij = δij = αij = σij = 100% and ρij = 1
schedule at soonest possible time

add π(pj)
update status of resources

else
no value added

no resources consumed
}

priority 1

priority 2

priority 3

priority 4

priority P

class 1

class 2

class C

- -

24

References

[AIC98] AICE, Agile Information Control Environment Proposers Information Package, BAA 98-26,
September 1998, http://web-ext2.darpa.mil/iso/aice/aicepip.htm.

[AlK03] Shoukat Ali, Jong-Kook Kim, Yang Yu, Shriram B. Gundala, Sethavidh Gertphol, Howard Jay

Siegel, Anthony A. Maciejewski, and Viktor Prasanna, “Utilization-based techniques for statically
mapping heterogeneous applications onto the hiper-d heterogeneous computing system,” Parallel and
Distributed Computing Practices, accepted to appear in 2003.

[BaS95] L. Badger, D. F. Stern, D. L. Sherman, K. M. Walker, and S. A. Haghighat, “Practical domain and type

enforcement for Unix,” 1995 IEEE Symposium on Security and Privacy, May 1995, pp. 66-77.

[BlF96] M. Blaze, J. Feigenbaum, and J. Lacy, “Decentralized trust management,” 1996 IEEE Symposium on

Security and Privacy, May 1996, pp. 164-173.

[BrS98] T. D. Braun, H. J. Siegel, N. Beck, L. L. Boloni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D.

Theys, and B. Yao, “A taxonomy for describing matching and scheduling heuristics for mixed-machine
heterogeneous computing systems,” IEEE Workshop on Advances in Parallel and Distributed Systems,
October 1998 (in the proceedings of the 17th IEEE Symposium on Reliable Distributed Systems,
October 1998, pp. 330-335).

[BrS01] T. D. Braun, H. J. Siegel, N. Beck, L. Boloni, R. F. Freund, D. Hensgen, M. Maheswaran, A. I. Reuther,

J. P. Robertson, M. D. Theys, and Bin Yao, “A comparison of eleven static heuristics for mapping a
class of independent tasks onto heterogeneous distributed computing systems,” Journal of Parallel and
Distributed Computing, Vol. 61, No. 6, June 2001, pp. 810-837.

[BrS02] T. D. Braun, H. J. Siegel, and A. A. Maciejewski, “Static mapping heuristics for task with dependencies,

priorities, deadlines, and multiple versions in heterogeneous environments,” in the CD-ROM
proceedings of the 16th International Parallel and Distributed Processing Symposium, (IPDPS 2002),
April 2002.

[ChS98] S. Chatterjee, B. Sabata, and J. Sydir, ERDoS QoS Architecture, Technical Report, SRI, Menlo Park,

CA, ITAD-1667-TR-98-075, May 1998.

[CoL98] M. Condell, C. Lynn, and J. Zao, “Security policy specification language,” INTERNET-DRAFT,

Network Working Group, October 1998, ftp://ftp.ietf.org/internet-drafts/draft-ietf-ipsec-spsl-00.txt.

[CoS99] C. Coutcoubetis, G. D. Stamoulis, C. Manolakis, and F. P. Kelly, “An intelligent agent for optimizing

QoS-for-money in priced ABR connections,” Telecommunications Systems, Special Issue on Network
Economics, (at http://www.statslab.cam.ac.uk/~frank/PAPERS/iaabr.html).

[DAR99] DARPA, Battlefield Awareness and Data Dissemination, April 1999, www.darpa.mil/iso/ badd/.

[Esh96] M. M. Eshaghian, ed., Heterogeneous Computing, ArTech House, Norwood, MA, 1996.

[Fer78] D. Ferrari, Computer Systems Performance Evaluation, Prentice-Hall, Englewood Cliffs, NJ, 1978

[FoK99] I. Foster and C. Kesselman, eds., The Grid: Blueprint for a New Computing Infrastructure, Morgan

Kaufmann, San Francisco, CA, 1999.

[HeK99] D. A. Hensgen, T. Kidd, D. St. John, M. C. Schnaidt, H. J. Siegel, T. D. Braun, M. Maheswaran, S. Ali,

J. Kim, C. Irvine, T. Levin, R. F. Freund, M. Kussow, M. Godfrey A. Duman, P. Carff, S. Kidd, V.
Prasanna, P. Bhat, and A. Alhusaini, “An overview of MSHN: The Management System for
Heterogeneous Networks,” 8th Heterogeneous Computing Workshop (HCW '99), April 1999, pp. 184-
198.

- -

25

[IrL00a] C. Irvine and T. Levin, “Toward quality of security service in a resource management system benefit

function,” 9th IEEE Heterogeneous Computing Workshop (HCW 2000), May 2000, pp. 133-139.

[IrL00b] C. E. Irvine and T. Levin, “Toward a taxonomy and costing method for security services,” 15th Annual

Computer Security Applications Conference, December 2000, pp 183-188.

[KiS94] J. H. Kim and H. S. Shin, “Optimistic priority-based concurrency control protocol for firm real-time

database systems,” Information & Software Technology, Vol. 36, No. 12, December 1994, pp. 707-715.

[KiS03] J.-K. Kim, S. Shivle, H. J. Siegel, A. A. Maciejewski, T. D. Braun, M. Schneider, S. Tideman, R. Chitta,

R. B. Dilmaghani, R. Joshi, A. Kaul, A. Sharma, S. Sripada, P. Vangari, and S. S. Yellampalli,
“Dynamic mapping in a heterogeneous environment with tasks having priorities and multiple
deadlines,” 12th Heterogeneous Computing Workshop (in the proceedings of the 17th International
Parallel and Distributed Processing Symposium (IPDPS 2003)), April 2003.

[Kre97] J. P. Kresho, Quality Network Load Information Improves Performance of Adaptive Applications,

Master’s Thesis, Department of Computer Science, Naval Postgraduate School, Monterey, CA,
September 1997 (D. A. Hensgen, advisor), 164 pp.

[LeK96] C. G. Lee, Y. K. Kim, S. H. Son, S. L. Min, and C. S. Kim, “Efficiently supporting hard/soft deadline

transactions in real-time database systems,” 3rd International Workshop on Real-Time Computing
Systems and Applications, October/ November 1996, pp. 74-80.

[LeL99a] C. Lee, J. Lehoczky, R. Rajkumar, and D. P. Siewiorek, “On quality of service optimization with

discrete QoS options,” 5th IEEE Real-Time Technology and Applications Symposium, June 1999, pp.
276-286.

[LeL99b] C. Lee, J. Lehoczky, D. Siewiorek, R. Rajkumar, and J. Hansen, “A scalable solution to the multi-

resource QoS problem,” 20th IEEE Real-Time Systems Symposium, December 1999, pp. 315-326.

[LiA97] K. J. Liszka, J. K. Antonio, and H. J. Siegel, “Problems with comparing interconnection networks: Is an

alligator better than an armadillo?,” IEEE Concurrency, Vol. 5, No. 4, October/December 1997, pp.18-
28.

[LiM94] J. P. Li and M. W. Mutka, “Priority based real-time communication for large scale wormhole

networks,” 8th International Parallel Processing Symposium, April 1994, pp. 433-438.

[LoS01] J. Loyall, R. Schantz, J. Sinky, P. Pal, R. Shapiro, C. Rodrigues, M. Atighetchi, D. Karr, J. M. Gossett,

and C. D. Gill, “Comparing and contrasting adaptive middleware support in wide-area and embedded
distributed object applications,” 21st International Conference on Distributed Computing Systems
(ICDCS 2001), April 2001, pp. 625-634.

[MaA99] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. F. Freund, “Dynamic mapping of a class of

independent tasks onto heterogeneous computing systems,” Journal of Parallel and Distributed
Computing, Vol. 59, No. 2, November 1999, pp. 107-121.

 [MaB99] M. Maheswaran, T. D. Braun, and H. J. Siegel, “Heterogeneous distributed computing,” in

Encyclopedia of Electrical and Electronics Engineering, J. G. Webster, ed., John Wiley, New York,
NY, 1999, Vol. 8, pp. 679-690.

[Mah99] M. Maheswaran, “Quality of service driven resource management algorithms for network computing,”

1999 International Conference on Parallel and Distributed Processing Technologies and Applications
(PDPTA ’99), June/July 1999, pp. 1090-1096.

- -

26

[Mar90] D. C. Marinescu, “A protocol for multiple access communication with real-time delivery constraints,”
IEEE INFOCOM '90, June 1990, pp. 1119-1126.

[Mar99] P. Marbach, “Pricing priority classes in a differentiated services network,” 37th Annual Allerton

Conference on Communication, Control, and Computing, September 1999.

[Por99] N. W. Porter, Resources Required for Adaptive C4I Models in a Heterogeneous Computing

Environment, Master’s Thesis, Dept. of CS, Naval Postgraduate School, Monterey, CA, June 1999 (D.
A. Hensgen, advisor), pp. 181.

[RaL97] R. Rajkumar, C. Lee, J. P. Lehoczky, and D. P. Siewiorek, “A resource allocation model for QoS

management,” IEEE Symposium on Real-Time Systems, December 1997, pp. 289-307.

[Roc96] A. J. Rockmore, BADD Functional Description, Internal DARPA Memo, February 1996.

[RyN98] T. Ryutov and C. Neuman, “Access control framework for distributed applications,” INTERNET-

DRAFT, CAT Working Group, November 1998, ftp://ftp.ietf.org/internet-drafts/draft-ietf-cat-acc-cntrl-
frmw-01.txt

[SaC97] B. Sabata, S. Chatterjee, M. Davis, J. Sydir, and T. Lawrence, “Taxonomy for QoS specifications,” 3rd

International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS '97), February
1997, pp. 100-107.

[ScS98] P. A. Schneck and K. Schwan, “Dynamic authentication for high-performance networked applications,”

6th International Workshop on Quality of Service (IWQoS '98), May 1998, pp. 127-136.

[ShW99] B. Shirazi, L. Welch, B. Ravindran, C. Cavanaugh, B. Yanamula, R. Brucks, and E. Huh, “DynBench: a

dynamic benchmark suite for distributed real-time systems,” in Parallel and Distributed Processing:
11th IPPS/SPDP ‘99, J. Rolim et al., eds., Springer, Berlin, April 1999, pp. 1335-1349.

[SiS82] L. J. Siegel, H. J. Siegel, and P. H. Swain, “Performance measures for evaluating algorithms for SIMD

machines,” IEEE Transactions on Software Engineering, Vol. SE-8, No. 4, July 1982, pp. 319-331.

[StS98] J. A. Stankovic, M. Supri, K. Ramamritham, and G. C. Buttazzo, “Terminology and assumptions,” in

Deadline Scheduling for Real-Time Systems, Kluwer Academic Publishers, Norwell MA, 1998, pp. 13-
22.

[ThS01] Mitchell D. Theys, Howard Jay Siegel, and Edwin K. P. Chong, “Heuristics for scheduling data requests
using collective communications in a distributed communication network,” Journal of Parallel and
Distributed Computing, Vol. 61, No. 9, pp. 1337-1366, Sep. 2001.

[ThT00] M. D. Theys, M. Tan, N. B. Beck, H. J. Siegel, and M. Jurczyk, “A mathematical model and scheduling

heuristics for satisfying prioritized data requests in an oversubscribed communication network,” IEEE
Transactions on Parallel and Distributed Systems, Vol. 11, No. 9, Sep. 2000, pp. 969-988.

[WaW97] C. Wang and W. A. Wulf, “A framework for security measurement,” The National Information Systems

Security Conference, October 1997, pp. 522-533.

[WaW98] W.E. Walsh, M. P. Wellman, P. R. Wurman, and J. K. Mackie-Mason, “Some economics of market-

based distributed scheduling,” 18th International Conference on Distributed Computer Systems, May
1998, pp. 612-621.

[XuN01] D. Xu, K. Nahrstedt, and D. Wichadakul, “QoS and contention-aware multi-resource reservation,”

Cluster Computing, Vol. 4, No. 2, April 2001, pp.95-107.

